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A recent communication of KONDO et al.' on the microwave and nmr studies of the structure 

and conformational isomerization of 3,6-dihydro-1,2-dioxine prompts us to disclose our results 

on the conformational analysis of the peroxide 1, as well as preliminary results on its thermal, 

photochemical, base, acid and Rh' promoted rearrangements2. 

- 

The diene 2 is highly reactive towards strong dienophiles3. As expected for a diene blocked 

in the s-cis conformation4, 2 added '0 - 2 (0.5 M in CC1 4, tetraphenylporphine, Pyrex vessel, Iodi- 

ne 250 W lamp, -lo', 02) rapidly, yielding the peroxide 1 (86%, after distillation). This 3,6- 

-dihydro-1,2-dioxine is of special interest for at least 3 reasons: (1) distinction between the 

half-chair (Cl) and boat (C,) conformations of the peroxide will be possible by 'H-nmr, (2) va- 

riable temperature 13 C-nmr will allow an easy evaluation of the activation parameters of its ring 

inversion and (3) the stereochemistry of the thermal and photochemical peroxide + 
135 

diepoxide 

rearrangement can be established by product analysis. 

The 'H- and l3 C-nmr spectra of ,l_ at 30' were consistent either with the fast equilibrating 

half-chair conformers or with the degenerate or near-degenerate equilibrium of the boat confor- 

mers li and lj. At -loo', the 13 - - C-{lH}-FT-nmr spectrum6 showed splitting of all signals except 

561 

li (Cs) - lj (Cs) - 



562 NO. 6 

6C = 46.7 ppm (C-7 of the norbornene substituent). This observation suggested the half-chair 

conformation, although it did not rule out a near 1:l mixture of 1i:lj. Because of the bicyclic -- 
substituent, the methylene hydrogens (Ha b c d ) of l_ must show a ABCD pattern in the 'H-nmr 

spectrum of a "blocked" half-chair confohition whereas the superposition of two symmetrical 

AA'BB' spectra should be observed for li z lj. Low temperature 'H-nmr (60 MHz, CDC12/CHF2Cl, - - 
-103') of 1 excluded the latter hypothesis and proved unambigously the half-chair conformation 

of the 3,6-dihydro-1,2-dioxine 1 _. Line-fitting of this spectrum with those simulated by the LOACN 

4 method7 for a ABCD spin system (long-range J H H between the CH2 protons of the peroxide 1 and 

the norbornene protons were neglected because t;ey were smaller than the spectrum resolution) 

gave the 'H-nmr characteristics of H 

2J H H between the geminal protons8. 

a b c d in 1 (see Table). A negative sign was attributed to 

I; ihi 3,6-dihydro-1,2-dioxine can be compared with (Z)-2- 

-buiene or cyclohexene derivatives', the homoallylic coupling constants 5J enable distinction 
H,H10 

between the pseudo-axial (Ha,d) and pseudo-equatorial (Hb c) hydrogens in 1 . 
, 

Table : 1 ------ H-nmr characteristics of the methylene Ha b c d in the peroxide 1 (60 MHz, -103') 
9 , , - 

6 of Ha : 4.90 ; Hb: 4.04 ; Hc: 4.35 ; Hd: 4.64 ppm (aTMS = 0.0 ppm) 

2Ja b = 
, 

-15.8; 2Jc d = 
, 

-16.4; 5Ja d 2.3; 
5 5 

, 
= 3.6; 5Ja c = 

, 
Jb,d = 2.05; Jb,c = 0.92 Hz 

Kinetic parameters for the half-chair inversion of 1 were determined by line-shape analy- 

sis l2 of the l3 C-(lH)-FT-nmr spectrum (15.08 MHz). At low temperature, the signal of the methy- 

lene carbons C-3,6 of the peroxide ("c = 69.7 ppm 6, was split into 2 lines separated by 23.8 Hz; 

coalescence occurred between -72' and -70'. Measurements at 15 different temperatures were made 

between -88.3' (4.2 s-l) and -51.4' (580 s-~)'~. An Arrhenius plot of the rate constants thus 

obtained permitted determination of the activation parameters Ea and 1ogA used to calculate the 

Eyring parameters at Tm t = 200 K, AH t_ = 10.2 + 0.2 kcal/mol and AS - 2.5 + 1 e.u.(standard devia- 

tions). These data are similar to those reported for 3,6-dihydro-1.2-dioxineland for 3,3,5-tri- 
13 

methyl-3,6-dihydro-1,2-dioxine . t Our AS is consistent with a transition state having either a 

half-boat or a boat conformation. 

Thermal isomerization of 1 (degassed cyclohexane or pentane, 130°, 6 h) yielded the trans- 

-diepoxide 2 (major; isolated yield: 57 - 70%) together with some y-hydroxy-a,B-unsaturated 

aldehyde 4 (< 15%) and the furan 2 (s l%)6. None of the cis-diepoxides 6 or 1. could be detected 

(vpc, tic, nmr). Similar product mixtures 2 t 4 t 2 were formed 

2537 fl Hg lamp, pentane or acetone, -10'). The high-selectivity 

in the photolysis of 1 (quartz, - 
of the isomerization 1 + 3 can - - 



No. 6 563 

be rationalized by invoking stereoelectronic control and/or electronic repulsion between the 

oxygen atoms during the homolysis of the O-O bond and closure to the diepoxide 2. 

In presence of CsF in 8MF l4 (40°, 3 h), 1 was isomerized to 4 in moderate yield (60%). 

Better yields (75%) of 4 were obtained by promoting the rearrangement 1'4 with Rh2(C0)4C12 

(0.01 M) in CHC13 (1 M if 1, ZOO, 10 - 12 h). This isomerization was not due to acidic impuri- 
.lr 

ties" as it was found that added K CO3 did 

presence of Rh2(CO),C12 or AcOH (25 
8 

). 'H-, 

s-trans conformation of the a,B-unsaturated 

heating (polymerization, isomerization). In 

not stop the reaction. The diepoxide 2 was stable in 
13 
C-nmr and IR spectra were consistent with the 

aldehyde 4. The labile aldehyde 4 decomposed upon - 
presence of acids, it yielded the furan 2, which 

was best obtained by heating 1 in AcOH (80°, 2 h, 60% isolated yield), 4 being an intermediate 
11,16 

- 
in the acid promoted water elimination J_ + 5 + H20 . 
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