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A recent communication of KONDO et a].] on the microwave and nmr studies of the structure
and conformational isomerization of 3,6-dihydro-1,2-dioxine prompts us to disclose our results
on the conformational analysis of the peroxide 1, as well as preliminary results on its thermal,
photochemical, base, acid and RhI promoted rearrangementsz.
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The diene 2 is highly reactive towards strong dienophi]ess. As expected for a diene blocked
in the s-cis conformation4, 2 added ]02 (0.5 M in CC14, tetraphenylporphine, Pyrex vessel, lodi-
ne 250 W Tamp, -100, 02) rapidly, yielding the peroxide 1 (86%, after distillation). This 3,6-
-dihydro-1,2-dioxine is of special interest for at least 3 reasons: (1) distinction between the
half-chair (C]) and boat (Cs) conformations of the peroxide will be possible by ]H-nmr, (2) va-
riable temperature "“C-nmr will allow an easy evaluation of the activation parameters of its ring
inversion and (3) the stereochemistry of the thermal and photochemical peroxide - diepoxide

rearrangement]’5 can be established by product analysis.

The 1H- and ]3C-nmr spectra of 1 at 30° were consistent either with the fast equilibrating
half-chair conformers or with the degenerate or near-degenerate equilibrium of the boat confor-
mers 1i and 1j. At -100°, the ]SC-{]H}-FT-nmr spectr‘um6 showed splitting of all signals except
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= 46.7 ppm (C-7 of the norbornene substituent), This observation suggested the half-chair
conformation, although it did not rule out a near 1:1 mixture of 1i:1j. Because of the bicyclic

substituent, the methylene hydrogens (H d) of 1 must show a ABCD pattern in the 1H-nrnr

spectrum of a "blocked" half-chair confg;zéiion whereas the superposition of two symmetrical
AA'BB' spectra should be observed for 1i 2 1j. Low temperature ]H -nmr (60 MHz, CDC]Z/CHF c1,
-103° ) of 1 excluded the latter hypothesis and proved unambigously the half-chair conformation

of the 3 6-d1hydro 1,2-dioxine 1. Line-fitting of this spectrum with those simulated by the LOACN

4 method for a ABCD spin system (long-range J between the CH2 protons of the peroxide 1 and

the norbornene protons were neglected because zhzy were smaller than the spectrum resolution)
gave the ]H-nmr characteristics of Ha ,b,c,d in 1 (see Table). A negative sign was attributed to
2 H H between the geminal protonsgé If the 3,6-dihydro-1,2-dioxine can bg compared with (Z)-2-
-butene or cyclohexene derivatives™, the homoallylic coupling constants JH H enable distinction

between the pseudo-axial (H ) and pseudo-equatorial (H c) hydrogens in 1 ]0.
a s -

Table : ]H-nmr characteristics of the methylene Ha b.c.d in the peroxide 1 (60 MHz, -1030)
b At Bl

4,04 5 H : 4.35; Hd: 4.64 ppm (GTMS = 0.0 ppm)

c
5 5

- . 5
Ja,c =2.3; 79

= 3.6; Jb,c

= 2.05; = 0,92 Hz

Ja.d b,d

Kinetic parameters for the half-chair inversion of 1 were determined by 1ine-shape analy-
sis 12 of the C { H}-FT-nmr spectrum (15.08 MHz) At low temperature, the signal of the methy-
lene carbons C-3,6 of the perox1de (6 = 69.7 ppm ) was split into 2 lines separated by 23.8 Hz;
coalescence occurred between -72° and 70 Measurements at 15 different temperatures were made
between -88.3° (4.2 s™') and -51.4° (580 s~ )]
obtained permitted determination of the activation parameters Ea and logA used to calculate the
Eyring parameters at T = 200 K, aH' = 10.2 + 0.2 kcal/mol and AS' = 2.5 + 1 e.u.(standard devia-
tions). These data are similar to those reported for 3,6-dihydro-1,2-dioxine and for 3,3,5-tri-
methy1-3,6-dihydro-1,2-dioxine 13. Our Agf is consistent with a transition state having either a

half-boat or a boat conformation.

. An Arrhenius plot of the rate constants thus

Thermal isomerization of 1 (degassed cyclohexane or pentane, ]300, 6 h) yielded the trans-
-diepoxide 3 (major; isolated yield: 57 - 70%) together with some y~hydroxy-a,8-unsaturated
aldehyde 4 (< 15%) and the furan 5 (v 1%)6. None of the cis-diepoxides 6 or 7 could be detected
{vpc, tic, nmr). Similar product mixtures 3 + 4 + 5 were formed in the photolysis of 1 (quartz,
2537 R Hg lamp, pentane or acetone, -100). The high-selectivity of the isomerization 1 + 3 can
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be rationalized by invoking stereoelectronic control and/or electronic repulsion between the
oxygen atoms during the homolysis of the 0-0 bond and closure to the diepoxide 3.

14 (400, 3 h), 1 was isomerized to 4 in moderate yield (60%).
Better yields (75%) of 4 were obtained by promoting the rearrangement 1 ~ 4 with RhZ(CO)4C]2
(0.01 M) in CHC]3 (1 Mof 1, 200, 10 - 12 h). This isomerization was not due to acidic impuri-

ties]5 as it was found that added K%CO3 did not stop the reaction. The diepoxide 3 was stable in
1

presence of ha(C0)4C'I2 or AcOH (257). H-, ]3C-nmr and IR spectra were consistent with the
s-trans conformation of the «,g-unsaturated aldehyde 4. The labile aldehyde 4 decomposed upon
heating (polymerization, isomerization). In presence of acids, it yielded the furan 5, which

was best obtained by heating 1 in AcOH (800, 2 h, 60% isolated yield), 4 being an intermediate

In presence of CsF in DMF

in the acid promoted water elimination 1+ 5 + H20 ]1’]6.
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